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SPALLATIONBY DUCTILEVOID

J. N. Johnson
Los A1.amos NationalLaboratory,Los

ABSTRACT

GROWTH*

AhlllOS,NM 87545

A mathematicalmodel of ductilevoid growthunder the applica-
tion of a mean tensilestressis appliedto the problemof spal.lation
in solids. Calculationof plate-impactspallationin copper (peak
compressivestress%29 kbar) shows good agreementwith the dynamical-
ly measuredspan signal. A second calculation,using identicalma-
terialparameters,of explosivelyproducedspallation in copper (peak
compressivestress %250 kbar) does very well in reprod~cingexperi-
mentallyobsemed multiplespan thicknessesas observedby dynamic
x-radiographictechniques. This theoreticalmodel thus appearsap-
plicableCO a wide rangeof dynamicuniaxial-strainloadingcondi-
tions,bridginga gap that has been thoughtto exist for some time.

INTRODUCTION

For every spallationexperimentthat is conducted,●n ad hoc
model can be developedto reproducedamage levels (in the fom of re-
sidualporosity),span location, growth rates, and so on. what is
presentlylackingis a singlemodel of ducti~e fracture capableof
reproducingthe experimentalresultsobtainedunder widelyvarying
conditions, For example,In the work of Breed,Mad@r, and Venablel
on ●xplosivelyproducedspallationof copper, ● computationalmodel
of fracturewas developed to correlatespan strengthwith span
thickness. This model has been useful in reproducingthe observed
span layersin explosiveevents,but la not ●pplicableto low-pres-
sura plate-impactexperiments. LLkcwise,models devalopedfor plata-
Impactsituationssaem to ba inadequate in the high-pressureregima.2
These modelswere developedto roprasantaccuratelythe onsot of
fracturg in ●ngineering desisn and no ●ttempt waa made to soe how
theyworkrndunder the very ●xtreme conditions of axplosiveloadingat
200-300kbar.

In the present work, che resultsof ● micro~copic model for duc-
tile hole growth●re presentedwhich relate the matol,4alporosity(an
internalstatevariable)to its initialvalue, the time historyof
the tensilepressure (or moan stress), ●nd ● single scalar parameter
roprescntinstha rato-dependent plastic flow properties of the solld
material surroundingthe voids. This introduces● minimumnumberof
adjustable parameters--also, the ones that are used have the possi-
bilityof baing detemin~d expariumtally.

*
Work ●upported by the U.S. Department of Energy,



VOID-GROWTHRJL4TIONSFOR DUCTILEMATERIALS

Carrolland Holt3 describea very usefulmodel of ductilevoid
collapsethat lends itselfdirectlyto a theoryof void growthunder
tensileloadingconditions--the only differenceis that the pressure,
p, is negativein the void-growthcase and the porosityincreases.
In additionto the obviouslytrivialreplacementof p with -p in
Carrolland Holt’smodel, a rate-dependentplasticflow term is added
that was not in the originaldevelopment,4

Ductilevoid growth is expressedin termsof the distentionra-
tio a : V/Vg,where V is the averagespecificvolume of a regioncon-
tainingvoids and Vs is the specificvolume of the solidmaterial
surroundingthe voids. The void-growthrate due to an averagemean
tensilestressp is given by

(Pa~/3)(ao- 1)‘2’3Q(u,&,a) =ap+ (2Y/3) knfi

+ ll(c%o- 1) -2/3;a-1)-% , (1)

*where

Q(ti,(i,U) = -d[(u- 1)
-1/3 - ~-1/31

1 ●2
CY [(a - 1)-4/3 - ~-4/31

‘3
, (2)

In Eq, (1) ao is the averageinitialvoid radius givingan initial
distentionratio uO, Y ia the yield strengthof the solid,and v is
the “viscosity”of the solid (i.e.,the proportionalityconstantbe-
tween shear stress and @astic strainrate).

PLATE-IMPACTAND EXPLOSIVELYGENERATEDSPALL IN COPPER

AB ●n fippllcationof the foregoin8theory,two quite different
spallation●xperimentson copperare calculatedby tha finite-differ-
●nce method, The first IS a plate-impact●xperimentsin which a 0,6-
uua-thickcopper plate strikes ● 1,6-nnncopper target backedby a rel-
atively thickplatm of Pl@lA (polymethylmethacrylate)in which a man-
ganin pressuregauge is nmbedded●pproximately0.5 mm from the copper
(target)/PMMA inter?ac~, The impactvelocityof 0.016 cm/}Jsproduces
a 29-kbarpeak strea~in the copper, Applicationof the dynamichole
growth analysisto the proidemof time-dependentspallationin copper
is shown in Fig. 1, Tha peak aho~kamplitudesare in some dioagree-
mnnt, but the span aignala(t > 0,8 pa) show 8ood ●greement,

The initialdistentionuo = 1,0003is taken to be the measured
porosityin the racoveredoampla at locations far from the ●pall
plane: the actualporoeityprior to shock loadingwas not re orted.s

IThe ●verage li~itialpore radius ia determinedto be 1.9 x 10- cm
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Fig. 1. Calculatedspan signal in
coppercomparedwith experimental
measurement,

from ao and the measured
void number density (107
cm-3).5 Othervoid growth
parametersused here are Y =
2.6 kbar and ~ = 10 poise.

To demonstratethe gen-
eralityof the foregoing
model of dynamicductile
fractureof copper,as de-
terminedby a singleplate-
impactexperiment,a finite-
differencecalculationis
made of explosivelyproduced
span fracturein copper. A
12.7-nun-thickpiece of Com-
positionB in contactwith a
25-mm-thickcopperplate
producestwo distinctspan
planes--thefirst (closest
to the free surface)plane
is apmoximately 2 mm thick
and the secondplane ia ap-
proximately3 mm thick.6 A
spallationcalculationis

made with the same pore-growthmodel used for the plate-impactexperi-
ment: the materialparameter remain exactlythe same,only the load-
ing conditionsare changed. The results of this calculation Are
shown in Fis. 2 (t - 6.0 ps) where a region about 2 mm thick is con-
tinuallyfractured,but the major diacontinuitiesin particleveloc-
ity define two span planes,one 2 mm thick,Closest to the free sur-
face, and the second3 m thick ae observedexperimentally.
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Fig. 2. Final cal-
culatedfracture
and porositydis-
tributionfor Los
ti~OS PHEIWEXnhot
500, The region
between the two
visibletipallplanee
(i.e.,thoee with
particlevelocity
discontinuitl~s)
continucato break
up ●fter apall
plana formation,
The free surface
(F.S,) is located
at the 2.92-cmpo-
aition,
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A ducti’ hole-growth model is applied to the problemof span
fractureof .opperfor plate-impactand explosiveloadingconditions.
Previousmodels have been found to work well in the incipientstages
of ductilefracture,while othersseem to be more applicableto com-
plete separation. The descriptim presentedhere thus tends to
bridge the 8ap betweenthe low-damageand completeseparationregimes
of span fracture.
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